A mineral silicate paint has been developed for architectural heritage. To enhance durability, any type of organic additive has been avoided. Potassium silicate was the binder agent intended to give strong adherence and durability to stone and concretes. Incorporation of mainly anatase titanium dioxide was intended to act both as a white, bright pigment and as a photocatalyst. Reflectivity analyses on the paint in the visible-to-near infrared wavelength region show high solar heat reflection. The self-cleaning activity of the mineral paint was evaluated by the degradation of organic dyes under solar light irradiation. Anatase titania was effective in decomposing organic and airborne pollutants with the solar radiation. The optical properties and self-cleaning activity were compared with the organic binder-based paints and commercial paints. Developed paints possess high stability: since they contain only inorganic components that do not fade with exposure to solar radiation, photocatalytic self-cleaning capability further enhances such stability.

Explore full article

Coatings 2016, 6(4), 48