Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide

In recent years more attentions have been paid for preparation of coatings with self-cleaning and antibacterial properties. These properties allow the surface to maintain clean and health over long times without any need to cleaning or disinfection. Acrylic coatings are widely used on various surfaces such as automotive, structural and furniture which their self-cleaning and antibacterial ability is very important. The aim of this work is the preparation of a polyacrylic based self-cleaning and antibacterial coating by the modification of TiO2 as a coating additive. TiO2 nanoparticles were sensitized to the visible light irradiation using graphene oxide through the preparation of TiO2/graphene oxide nanocomposite. Graphene oxide was prepared via a modified Hummers method. TiO2/graphene oxide nanocomposite was used as additive in a polyacrylic coating formulation. Hydrophilicity, photocatalytic and antibacterial activities as well as coating stability were evaluated for TiO2/graphene oxide modified polyacrylic coating and compared with that of pristine TiO2 modified and unmodified polyacrylic coatings. TiO2/graphene oxide nanocomposite and polyacrylic coating modified by TiO2/graphene oxide additive were characterized using FT-IR, UV–Vis, XRD, and FESEM techniques. The effect of TiO2/graphene oxide composition and its percent in the coating formulation was evaluated on the polyacrylic coating properties. Results showed that polyacrylic coating having 3% W TiO2/graphene oxide nanocomposite additive with TiO2 to graphene oxide ratio of 100:20 is the best coating considering most of beneficial features such as high photodecolorization efficiency of organic dye contaminants, high hydrophilicity, and stability in water. According to the results, TiO2 is effectively sensitized by graphene oxide and the polyacrylic coating modified by TiO2/graphene oxide nanocomposite shows good photocatalytic activity under visible light irradiation.

Explore further

Volume 80, 1 November 2017, Pages 642–651


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.


You have successfully subscribed to the newsletter

There was an error while trying to send your request. Please try again.

Paints and Coatings Expert will use the information you provide on this form to be in touch with you and to provide updates and marketing.
%d bloggers like this: