An antibacterial coating composed of silver nanoparticles and waterborne polyurethane was synthesized for use on synthetic leather. In this study, silver nanoparticles were prepared and used as nanofiller to impart antibacterial property. Silver nanoparticles were synthesized by using poly(vinyl pyrrolidone) as dispersant and sodium borohydride (NaBH4) as reducing agent. Silver nanoparticles were characterized by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The optimum dispersant was selected according to the zeta potential of dispersions. Waterborne polyurethane was synthesized by using isophorone diisocyanate, 2-bis(hydroxymethyl)propionic acid, triethylamine, and polytetramethylene ether glycol. Waterborne polyurethane–silver antibacterial coating was obtained by ultrasonic dispersion, and then cast on the surface of synthetic leather. The antibacterial property and coating adhesion were investigated. The results showed silver nanoparticles homogeneously dispersed in waterborne polyurethane and adhesion reaching grade 4. Antibacterial testing showed bacterial reduction of 99.99% for Escherichia coli and 87.5% for Staphylococcus aureus.

Explore further

Journal of Coatings Technology and Research

pp 1–9|