Self-healing superhydrophobic surfaces have been fabricated by casting and drying water-soluble amphiphilic polymer suspensions at room temperature through thermal reconstruction. When compared with previous methods, this approach exploits modified natural hierarchical microstructures from wood instead of artificially constructing them for superhydrophobic morphology, which involves neither organic solvent nor inorganic particles nor complex procedures. The obtained superhydrophobic surface has acceptable resistance to abrasion. The surface can recover superhydrophobicity spontaneously at room temperature upon damage, which can be accelerated at a higher temperature. After depleting healing agents, the polymer suspension can be sprayed or cast onto wood surfaces to replenish healing agents and to restore self-healing ability. The superhydrophobic surface greatly increases the mold inhibition and water resistance of wood, which would prolong the service life of wood based materials.
Coatings 20188(4), 144