Advertisements

Smooth hydrophobic coatings may be more effective for aircraft de-icing

Icing poses a hazard to aircraft and is usually prevented with anti-icing fluids and hydrophobic coatings that reduce wettability and do not allow water to freeze on the aircraft surface. Yet little is known about whether combining these two methods is effective. Russian researchers have found out how hydrophobic coatings influence the efficiency of anti-icing fluids. Their experimental findings indicate that skin wettability does not make de-icing methods less effective, however, a surface relief pattern disrupting ice accretion also prevents the anti-icing fluid from forming a uniform protective film. This research, supported by the Russian Science Foundation (RSF) Presidential Program grant, was published in the journal International Communications in Heat and Mass Transfer.

Ice not only affects an aircraft’s aerodynamic performance but can also disrupt the operation of its engines and control devices, so particular attention should be given to de-icing. While on the ground, the aircraft is sprayed with anti-icing fluids that form a protective film on the surface so that atmospheric moisture does not freeze on the fuselage. However, this provides short-term protection only, because the fluid quickly flows off during takeoff and acceleration.

The anti-icing systems used in flight include heaters and inflatable protectors. Aircraft manufacturers and scientists work together on enhancing their efficiency by using water-repellent hydrophobic coatings that reduce surface wettability and ice adhesion. However, recent research by Canadian scientists has shown that this approach might prevent the anti-icing fluid from forming a protective film.

Researchers at Skoltech decided to check whether the surface wettability of aluminum used in the aircraft skin actually affects the performance of anti-icing fluids. In its experiment, the team created a freezing rain environment and saw ice form on superhydrophilic plates where fluids flow easily and hydrophobic aluminum plates treated with anti-icing fluids.

In contrast to the findings of the Canadian researchers, the Skoltech team discovered that plate wettability had no impact whatsoever on the performance of anti-icing fluids. The Russian scientists assume that their unexpected findings may have to do with the surface tension and viscosity of anti-icing fluids. A further factor to be taken into account by future research is surface roughness: Rough surfaces take longer to accumulate ice. In addition, the Skoltech study showed that the accumulation of liquid in the surface texture reduces the water-repellent properties of hydrophobic coatings.

“We think smooth hydrophobic coatings are better than rough superhydrophobic coatings when it comes to treatment with anti-icing fluids,” Viktor Grishaev, Ph.D., a senior research scientist at Skoltech and RSF grant project manager, commented.

donate

YOUR SUPPORT IS CRITICAL TO KEEP PCE ALIVE

$3.00

Story Source: Viktor G. Grishaev et al, Anti-icing fluids interaction with surfaces: Ice protection and wettability change, International Communications in Heat and Mass Transfer (2021). DOI: 10.1016/j.icheatmasstransfer.2021.105698

Note: Content may be edited for style and length.

Explore further

Explore further

Explore further

Explore further

Explore further

Advertisements

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

SUBSCRIBE TO OUR NEWSLETTER

You have successfully subscribed to the newsletter

There was an error while trying to send your request. Please try again.

Paints and Coatings Expert will use the information you provide on this form to be in touch with you and to provide updates and marketing.
%d bloggers like this: